Biostatistics I: Hypothesis testing

Continuous data: Correlation tests

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

e.andrinopoulou@erasmusmc.nl

♥@erandrinopoulou

- Pearson correlation test
- Spearman correlation test
- Examples

Assumptions

- The variables must be continuous
- There is a linear relationship between the two variables
- The data has homoscedasticity
- The variables is approximately normally distributed
- The two variables represent paired observations
- The variables do not contain any outliers

Is the height of the students in my university linearly associated with their weight?

Connection with linear regression

 $scale(y_i) = \beta_0 + \beta_1 scale(x_i) + \epsilon_i$ $H_0 : \beta_1 = 0$ $H_1 : \beta_1 \neq 0$

Is the height of the students in my university linearly associated with their weight?

Alternatively

 $H_0: \rho = 0$ $H_1: \rho \neq 0$

Pearson correlation test: Theory

Test statistic

 $t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$

- Sample correlation: *r*
- ▶ Number of subjects: *n*

Sampling distribution

- *t*-distribution with df = n 2
- Critical values and p-value

Type I error

• Normally α = 0.05

Draw conclusions

• Compare test statistic (t) with the critical values or the p-value with α

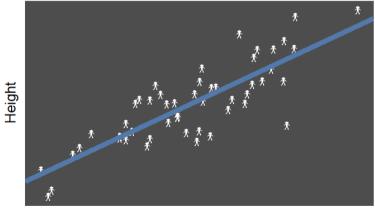
Is the height of the students in my university linearly associated with their weight?

Hypothesis

 $H_0: \rho = 0$ $H_1: \rho \neq 0$

Pearson correlation test: Application

Collect and visualize data



Weight

Pearson correlation test: Application

Hypothesis

 $\begin{aligned} H_0 : \rho &= 0 \\ H_1 : \rho &\neq 0 \end{aligned}$

Test statistic

Let's assume that:

- Sample correlation r = 0.83
- Number of subjects n = 50

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{0.83\sqrt{50-2}}{\sqrt{1-0.83^2}} = 10.31$$

Degrees of freedom *df* = 50 - 2 = 48

Type I error $\alpha = 0.05$

Pearson correlation test: Application

Critical values

Using R we get the critical values from the t-distribution:

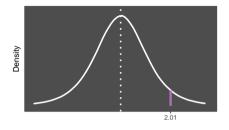
critical value_{$\alpha/2$} = critical value_{0.05/2}

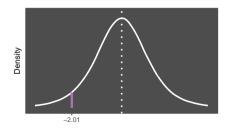
qt(p = 0.05/2, 48, lower.tail = FALSE)

```
[1] 2.010635
-critical value<sub>\alpha/2</sub> = -critical value<sub>0.05/2</sub>
```

qt(p = 0.05/2, 48, lower.tail = TRUE)

[1] -2.010635





Draw conclusions

We reject the H_0 if:

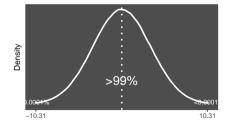
► *t* > critical value_{$\alpha/2$} or *t* < - critical value_{$\alpha/2$}

We have 10.31 > 2.01 \Rightarrow we reject the H_0

Using R we obtain the p-value from the *t*-distribution:

2 * pt(q = 10.31, df = 48, lower.tail = FALSE)

[1] 9.23435e-14



Assumptions

- The variables must be continuous/ordinal
- There is a monotonic relationship between the two variables
- The two variables represent paired observations

Is the height of the students in my university monotonically associated with their weight?

Connection with linear regression

The slope becomes the correlation if we use the rank of the two variables of interest

What is rank? Ranks are integers indicating the rank of some values. E.g. the rank of 3, 10, 16, 6, 2 is 2, 4, 5, 3, 1:

rank(c(3, 10, 16, 6, 2))

[1] 2 4 5 3 1

Connection with linear regression

```
\begin{aligned} rank(y_i) &= \beta_0 + \beta_1 rank(x_i) + \epsilon_i \\ H_0 &: \beta_1 &= 0 \\ H_1 &: \beta_1 \neq 0 \end{aligned}
```

Alternatively

 $H_0: \rho = 0 \\ H_1: \rho \neq 0$

Spearman correlation test: Theory

Test statistic

 $t = \frac{r_R \sqrt{n-2}}{\sqrt{1-r_R^2}}$

- Sample correlation based on ranked data: *r*_R
- Number of subjects: n

Sampling distribution

- *t*-distribution with df = n 2
- Critical values and p-value

Type I error

• Normally α = 0.05

Draw conclusions

Compare test statistic (t) with the critical values_{α/2} or the p-value with α

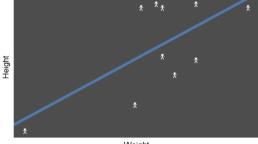
Is the height of the students in my university monotonically associated with their weight?

Hypothesis

 $H_0: \rho = 0$ $H_1: \rho \neq 0$

Collect and visualize data

rank_y 2.0 3.0
30
5.0
5.0
7.0
9.5
1.0
9.5
4.0
7.0
7.0



Weight

Spearman correlation test: Application

Hypothesis

 $H_0: \rho = 0$ $H_1: \rho \neq 0$

Test statistic

Let's assume that:

- Sample correlation $r_R = 0.41$
- Number of subjects

$$t = \frac{r_R \sqrt{n-2}}{\sqrt{1-r_R^2}} = \frac{0.41\sqrt{10-2}}{\sqrt{1-0.41^2}} = 1.27$$

Degrees of freedom df = 10 - 2 = 8

Type I error $\alpha = 0.05$

Spearman correlation test: Application

Critical values

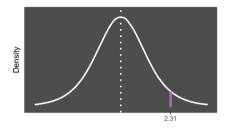
Using R we get the critical values from t-distribution:

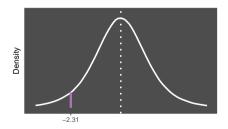
critical value_{$\alpha/2$} = critical value_{0.05/2}

qt(p = 0.05/2, df = 8, lower.tail = FALSE)

```
[1] 2.306004
-critical value<sub>\alpha/2</sub> = -critical value<sub>0.05/2</sub>
qt(p = 0.05/2, df = 8, lower.tail = TRUE)
```

[1] -2.306004





Draw conclusions

We reject the H_0 if:

► $t > critical value_{\alpha/2}$ or $t < - critical value_{\alpha/2}$

We have $1.27 < 2.31 \Rightarrow$ we do *not* reject the H_0

Using R we obtain the p-value from the *t*-distribution:

2 * pt(q = 1.27, df = 8, lower.tail = FALSE)

[1] 0.2397765

